
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 15

(Some notes adapted from Susan E. Sim & UML Distilled)

Topic 15 2

Announcements
Quiz #3- Next Friday 11/9
● All readings assigned since the last quiz
● Plus the readings not covered on the last quiz

◘ Ch 2 from “The Mythical Man-Month”
◘ Van Vliet Ch. 4

● Lectures from 10/31 – 11/7
Updated Assignment #2 – zip file
Reminder
● Read: Van Vliet Ch. 12

◘ Other info on UML that might be useful:
• http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/

◘ Argo UML Info:
• http://argouml.tigris.org/

● Some books on UML:
• Fowler (2004). UML Distilled: Third Edition: A Brief Guide to the Standard

Object Modeling Language, Addison-Wesley, 2004

• Larman (2005) .Applying UML and Patterns, Third Edition. Prentice Hall
PTR, 2005

Topic 15 3

Previously in INF 111…
Configuration Management
● For more info read Ch 19 on SCCS

2

Topic 15 4

Today’s Lecture

Object Oriented Analysis & Design
(OOAD) using…
●UML – Part 1

◘Overview
◘More details in discussion

Topic 15 5

Brooks on Invisibility of Software
“Software is invisible and unvisualizable. Geometric abstractions
are powerful tools.”

“As soon as we attempt to diagram software structure, we find it to
constitute one, but several general directed graphs, superimposed
on upon another. The several graphs may represent the flow of
control, the flow of data, patterns of dependency, time sequence,
name-space relationships. These are usually not even planar,
much less hierarchical. Indeed, one of the ways of establishing
conceptual control over such structure is to enforce link
cutting until one or more of the graphs becomes hierarchical.”

Topic 15 6

Unified Modeling Language
Let’s break it down:

Unified
In 1994,
● Two important methodologists Rumbaugh and Booch

decided to unify their approaches in 1994
In 1995, another methodologist, Jacobson, joined the
team
● His work focused on use cases

In 1997,
● the Object Management Group (OMG) started to

standardize UML

3

Topic 15 7

Models
Models are abstract representations

Contain essential characteristics and omit non-
essential details
“Essential” depends on the problem domain
● There are no perfect representations

Models can be representations of the world
● Domain models
● Requirements

Models can be representations of software
● Specifications
● Design
● Systems

Topic 15 8

Why make models?
Systems are complex and hard to understand
● The world, organizations, relationships, software

Models can make certain aspects more clearly
visible than in the real system

What can you do with models?
● Express your ideas and communicate with other

engineers
● Reason about the system

◘ detect errors
◘ predict qualities

● Generate parts of the real system
◘ Code
◘ Schemas

Can reverse engineer a system to make a model

Topic 15 9

What constitutes a good model?

A model should…
● Provide abstraction
●Render the problem in a format

amenable to reasoning
● use a standard notation
● be understandable by clients and users
● lead software engineers to have

insights about the system
●make the problem solvable

computationally
◘Be good enough

4

Topic 15 10

Remember: It’s only a model

There will always be:
Phenomena in the application domain
that are not in the model (abstraction)
Details in the application that are not in
the model (abstraction)
● Just what you need

A model is never perfect
● “If the map and the terrain disagree,

believe the terrain”

Topic 15 11

Modeling Languages
Natural language

● Extremely expressive and flexible
● Very poor at capturing the semantics of the model
● Better used for elicitation, and to annotate models for communication

Semi-formal notation
● Captures structure and some semantics
● Can perform (some) automated reasoning, consistency checking,

animation, etc.
● Mostly visual - for rapid communication with a variety of stakeholders

Examples: diagrams, tables, structured English, etc.

Formal notation
● very precise semantics, extensive reasoning possible
● Can automate reasoning, consistency checking, completeness

checking, simulation, etc..
● Every detailed models)

Topic 15 12

Unified Modeling Language (UML)

UML is a …
● semi-formal graphical (visual) modeling

language
●Object Modeling Language (OMD)
● A way to communicate details…

◘Code
◘Architecture

Uml is descriptive tries not to be
prescriptive

5

Topic 15 13

3 Common Way to Use UML

Sketch - Quick Communication

Blueprint – Complete Specification

Programming Language

Topic 15 14

UML as a Sketch
Helps communicate some aspect of the
system
● Forward & reverse engineering

“Rough out” issues in the code
Not all of the code – just parts that you are
working on immediately
● Selective communication NOT complete

specification
Short discussion with a team (10 min – 1
day)
Quick and Collaborative
Informal

Topic 15 15

UML as a Blueprint
Complete specification
● Forward & reverse engineering

Detailed design
● All design decisions laid out
● Simplifies programming

Usually done by senior developer
More formally documented
CASE tools
● Forward Engineering

◘ Support diagramming
◘ Repository to store information

● Reverse Engineering
◘ Read source code Generate Diagrams

6

Topic 15 16

UML as a Programming Language

UML Diagrams compiled into exe
code
● Automatic code generation
● Sophisticated tool support

Topic 15 17

Types of UML Diagrams
Structure .

(6 types)
Class diagrams
Object diagram
Package diagram
Composite structure
diagram
Component diagram
Deployment Diagram

Behavior .
(4 types)

Activity diagram
Use Case diagram
State machine diagram
Interaction diagrams
● Sequence diagram
● Communication diagram
● Interaction overview

diagram
● Timing diagram

If the appropriate diagram is not part of UML
use it anyways

Topic 15 18

UML & the Software Process
(Requirements)
● Use Cases

◘ Describe how people interact with the system
● Class Diagram

◘ Drawn from a conceptual perspective
◘ Can build up a rigorous vocab of the domain

● Activity Diagram
◘ Shows the workflow of the org.

• Shows how s/w and human activities interact
◘ Context for Use Cases
◘ Details of complex Use Cases

● State Diagram
◘ Shows states and events that change the state

• Can be useful with interesting life cycles
Communication is key

Customers may not be familiar with S/W techniques

Break the rules is it enhances Communication

7

Topic 15 19

UML & the S/W Process
(Design)

Class Diagrams
● From a software perspective

◘ Show classes & how they interrelate
Sequence Diagrams
● For Common Scenarios

◘ Pick most significant scenarios from Use Cases
◘ Use CRC cards or sequence diagrams to determine how the software

should behave
• Class, Responsibilities, Collaborators (CRC) cards are index cards used to

represent
» the responsibilities of classes
» interaction between the classes

Package Diagrams
● Show large-scale organization of the system

State Diagrams
● Used for classes with complex lifecycles

Deployment Diagrams
● Show the physical layout of the software

All of these can be used for design

Topic 15 20

Class Diagrams

“A Class Diagram describes the types of
objects in the system and the various
kinds of static relationships that exist
among them”

Class Name

Attributes
(Name:type)

Operations / Methods
(Name: Parameters)

Makes it easier
to see

the big picture

– Know what a
class does at a

glance

Topic 15 21

Class Diagrams (terminology)
Properties
● A structural feature of a class (fields in a class)
● Can be represented 2 ways: Attributes and associations

Attribute
● Describes a property as a line of text within the class box
● Attribute name corresponds to the name of a field in a

programming language
● Visibility Marker

◘ Denotes whether an attribute is…
• Public (+) or Private (-)

Associations
● Describes a property as a solid line between 2 classes
● Source to the target class

Attributes and Associations
Different notations for the same thing

8

Topic 15 22

Example: Properties as Attributes

Placing an Order

Order

+ DateReceived: Date: [0..1]

+ IsPrepaid: Boolean [1]

+ lineItems: Orderline[*] {ordered}

Topic 15 23

Properties as Associations

Placing an order:

Date Order Boolean

OrderLine

+ dateReceived
0..1 * isPrepaid

1

lineItems
{ordered}

1

*

Source

Target

Topic 15 24

Attributes & Associations
Same properties different
notations
When do you use which?
● Attributes for more simple properties (such

as Booleans or Dates)
● Associations for more significant properties

(such as Orders or Customers)
Associations show more – such as
multiplicities (covered in discussion)

